1.初始化SPI,MCU各引腳。
當有數據接收或發送狀態聲明時,有中斷和查詢兩種方式。GDO0與GDO2引腳輸出至MCU引腳,若要用中斷則要接至MCU外部中斷引腳,查詢時則可用GPIO。
2.復位CC1101。
3.初始化CC1101。(寫操作時可從SO中讀出CC1101狀態)
初始化后CC1100為IDLE狀態.
4.狀態機轉換,寫/讀FIFO數據。
每次寫操作時SO返回的值為寫操作前的CC1100狀態值,具體值見Table20;讀狀態命令為當前CC1100狀態值,具體值見寄存器0X35說明;注意兩者區別。
快速認識Cc1100
Cc1100可以工作在同步模式下,代價是:MCU自己控制前導碼。本系統中,Cc1100將工作在異步模式下。
知識點
Head Byte:在 引腳 Cc1100.Csn 有效后,通過SPI總線寫入 Cc1100的第一個字節。
Status Byte: 在寫入 HeadByte 的同時,MCU 得到 Status Byte。
Burst Bit:在 Head Byte 中的一個 Bit, 有效值=="1",無效值=="0"
GDO0:
GDO0可用作FIFO狀態輸出,載波感應(CS),時鐘輸出,GDO0 腳也能用作集成于芯片的模擬溫度傳感器(未用).配置寄存器為IOCFG0(0X02),現在配置為RX模式下數據狀態反應輸出.
GDO1:
GDO1與SPI的SO共用引腳,默認狀態下為3態,當CSn為低電平時,此引腳SPI的SO功能生效。配置寄存器為IOCFG0(0X01),現在配置為空閑狀態下3態,SPI模式下SO.
GDO2:
GDO2可用作FIFO狀態輸出,載波感應(CS),時鐘輸出,配置寄存器為IOCFG0(0X00),現在配置為載波感應(CS)輸出.
TXOFF_MODE/RXOFF_MODE:
注意,此配置為在數據包被發送/接收后狀態機狀態決定位,僅是在發生發送或者接收后動作;當為IDLE時發SRX/STX后狀態機不按此配置運行。TX/RX后要校準。
功率放大控制(PATABLE):
0X3E為功率寫入地址,0X22為為功率配置寄存器。PATABLE 是一個8字節表,定義了8個PA 功率值。這個表從最低位(0)到最高位(7)可讀和寫,一次一位。一個索引計數器用來控制對這個表的訪問。
每讀出或寫入表中的一個字節,計數器就加 1。當 CSn 為高時,計數值置為最小值。當達到最大值時,計數器由零重新開始計數。
FREND0.PA_POWER(2:0)從8個功率值中選擇1個,且振幅為相應數等級。
異步模式:
在此模式下,CC1101中的MCU的若干支持機制會停用,包括數據包硬件處理,FIFO 緩沖,數據白化,交錯(interleaver)和前向糾錯(FEC) ,曼徹斯特編碼(Manchester encoding);
MSK不支持異步模式;
PKTCTRL0.PKT_FORMAT == 3 使能異步模式,GDO0為input,GDO0, GDO1或GDO2為output 相應配置位為IOCFG0.GDO0_CFG, IOCFG1.GDO1_CFG IOCFG2.GDO2_CFG;
電磁波激活(WOR):
在WOR濾波使用之前RC振蕩器必須啟用,RC振蕩器是 WOR 定時器的時鐘源.在WOR下,收到信號后會自動進入RX模式.
載波感應(CS)與RSSI:
因此兩配置相互有連系,所以一起論述.
RSSI 只能在RX模式下才能有效,作用為對當前信號質量評估,信號質量可從RSSI寄存器讀出.RSSI信號強度可從0X34取出.
RSSI(信號強度)計算公式: 注:此為433M下,結果為負數,
RSSI_dBm=(RSSI-256)/2-74 (RSSI>=128)
RSSI_dBm= (RSSI/2)-74 (RSSI<128)
CS 只在RX模式下才能有效,當信號質量高于設定門限值時,CS狀態將會被聲明。現在配置為GDO2輸出感應狀態.
CS門限值由以下4個寄存器決定
?? AGCCTRL2.MAX_LNA_GAIN
?? AGCCTRL2.MAX_DVGA_GAIN
?? AGCCTRL1.CARRIER_SENSE_ABS_THR
?? AGCCTRL2.MAGN_TARGET
?? AGCCTRL2.MAX_DVGA_GAIN
?? AGCCTRL1.CARRIER_SENSE_ABS_THR
?? AGCCTRL2.MAGN_TARGET
CS門限值計算公式: 表默認門限值 + (MAGN_TARGET-33) + CARRIER_SENSE_ABS_THR.
表默認門限值見table29,table30. 由AGCCTRL2.MAX_LNA_GAIN AGCCTRL2.MAX_DVGA_GAIN 決定.
默認門限值表只給了兩個數據速率下的值,其余由自己測.我們對此要求不是太高,可以參考用這個表.
CARRIER_SENSE_ABS_THR為對應表中-7~7的值,最后單位為dBm.
Example:
在250K下AGCCTRL2.MAX_LNA_GAIN = 00 AGCCTRL2.MAX_DVGA_GAIN = 00 得出表中為-90.5
MAGN_TARGET = 7(42), CARRIER_SENSE_ABS_THR = 1(1)
門限為-90.5 + (42-33) + 1= -82.5dBm
清理信道訪問(CCA):
清理信道訪問用來指示當前信號是空閑還是忙。當忙時是否丟棄當前數據,寄存器MCSM1.CCA_MODE決定是否丟棄.默認配置為保留當前寄存器中數據,丟棄下一步要處理數據.
數據FIFO:
當TX操作時,由MCU控制,溢出時CC1101出錯;當RX操作時,讀空時CC1101出錯
RX FIFO 和 TX FIFO 中的字節數也能分別從狀態寄存器 RXBYTES.NUM_RXBYTES和TXBYTES.NUM_TXBYTES 中讀出
4 位 FIFOTHR.FIFO_THR 設置用來控制FIFO 門限點
讀單字節時,,CSn繼續保持低;。突發訪問方式允許一地址字節,然后是連續的數據字節,直到通過設置 CSn 為高來斷訪問
當寫操作時,最后一個字節被傳送至 SI 腳后, 被 SO腳接收的狀態位會表明在 TX FIFO中只有一個字節是空閑,
寄存器分類
| Configration Registers |
共47個,可讀,可寫 0x00~0x2E |
|||
| Status Registers |
共14個,只讀 0x30~0x3D |
|||
| Command Strobe |
共14個,只寫 尋址空間:0x30~0x3D
14個地址,對相應的地址進行寫, 就相當于激活了對應的命令 |
本系統是用到的Strobe: CC1100_STROBE_RESET |
||
| TX FIFO | 共64個,只寫 | |||
| RX FIFO | 共64個,只讀 | |||
Status(Command)Registers操作:
當地址為0X30~0X3D時
burst為1:對Status Registers的操作
Status Registers只可讀,且只能一次讀一個字節,不可寫
burst為0:對Command Registers操作
寄存器的訪問和一個寄存器的操作一樣,但沒有數據被傳輸.寫完畢后,CC1100便執行相應操作.
讀寫FIFO,有兩種模式:單字節讀寫;Burst讀寫。
單字節讀寫時序:
1 Cc1100.Csn有效。
2 寫入Head Byte。
3 讀、寫一個1字節。
4 Cc1100.Csn無效。
#include <reg52.h>
#include <intrins.h>
#define INT8U unsigned char
#define INT16U unsigned int
#define WRITE_BURST 0x40 //連續寫入
#define READ_SINGLE 0x80 //讀
#define READ_BURST 0xC0 //連續讀
#define BYTES_IN_RXFIFO 0x7F //接收緩沖區的有效字節數
#define CRC_OK 0x80 //CRC校驗通過位標志
//*****************************************************************************************
sbit GDO0 =P1^3;
sbit GDO2 =P3^2;
sbit MISO =P1^6;
sbit MOSI =P1^5;
sbit SCK =P1^7;
sbit CSN =P1^2;
//*****************************************************************************************
sbit LED2 =P3^4;
sbit LED1 =P3^5;
sbit KEY1 =P3^6;
sbit KEY2 =P3^7;
//*****************************************************************************************
sbit led3=P2^3;
sbit led2=P2^2;
sbit led1=P2^1;
sbit led0=P2^0;
//*****************************************************************************************
//INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60};
INT8U PaTabel[8] = {0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0 ,0xc0};//修改發射功率
//*****************************************************************************************
void SpiInit(void);
void CpuInit(void);
void RESET_CC1100(void);
void POWER_UP_RESET_CC1100(void);
void halSpiWriteReg(INT8U addr, INT8U value);
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count);
void halSpiStrobe(INT8U strobe);
INT8U halSpiReadReg(INT8U addr);
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count);
INT8U halSpiReadStatus(INT8U addr);
void halRfWriteRfSettings(void);
void halRfSendPacket(INT8U *txBuffer, INT8U size);
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length);
//*****************************************************************************************
// CC1100 STROBE, CONTROL AND STATUS REGSITER
#define CCxxx0_IOCFG2 0x00 // GDO2 output pin configuration
#define CCxxx0_IOCFG1 0x01 // GDO1 output pin configuration
#define CCxxx0_IOCFG0 0x02 // GDO0 output pin configuration
#define CCxxx0_FIFOTHR 0x03 // RX FIFO and TX FIFO thresholds
#define CCxxx0_SYNC1 0x04 // Sync word, high INT8U
#define CCxxx0_SYNC0 0x05 // Sync word, low INT8U
#define CCxxx0_PKTLEN 0x06 // Packet length
#define CCxxx0_PKTCTRL1 0x07 // Packet automation control
#define CCxxx0_PKTCTRL0 0x08 // Packet automation control
#define CCxxx0_ADDR 0x09 // Device address
#define CCxxx0_CHANNR 0x0A // Channel number
#define CCxxx0_FSCTRL1 0x0B // Frequency synthesizer control
#define CCxxx0_FSCTRL0 0x0C // Frequency synthesizer control
#define CCxxx0_FREQ2 0x0D // Frequency control word, high INT8U
#define CCxxx0_FREQ1 0x0E // Frequency control word, middle INT8U
#define CCxxx0_FREQ0 0x0F // Frequency control word, low INT8U
#define CCxxx0_MDMCFG4 0x10 // Modem configuration
#define CCxxx0_MDMCFG3 0x11 // Modem configuration
#define CCxxx0_MDMCFG2 0x12 // Modem configuration
#define CCxxx0_MDMCFG1 0x13 // Modem configuration
#define CCxxx0_MDMCFG0 0x14 // Modem configuration
#define CCxxx0_DEVIATN 0x15 // Modem deviation setting
#define CCxxx0_MCSM2 0x16 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM1 0x17 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM0 0x18 // Main Radio Control State Machine configuration
#define CCxxx0_FOCCFG 0x19 // Frequency Offset Compensation configuration
#define CCxxx0_BSCFG 0x1A // Bit Synchronization configuration
#define CCxxx0_AGCCTRL2 0x1B // AGC control
#define CCxxx0_AGCCTRL1 0x1C // AGC control
#define CCxxx0_AGCCTRL0 0x1D // AGC control
#define CCxxx0_WOREVT1 0x1E // High INT8U Event 0 timeout
#define CCxxx0_WOREVT0 0x1F // Low INT8U Event 0 timeout
#define CCxxx0_WORCTRL 0x20 // Wake On Radio control
#define CCxxx0_FREND1 0x21 // Front end RX configuration
#define CCxxx0_FREND0 0x22 // Front end TX configuration
#define CCxxx0_FSCAL3 0x23 // Frequency synthesizer calibration
#define CCxxx0_FSCAL2 0x24 // Frequency synthesizer calibration
#define CCxxx0_FSCAL1 0x25 // Frequency synthesizer calibration
#define CCxxx0_FSCAL0 0x26 // Frequency synthesizer calibration
#define CCxxx0_RCCTRL1 0x27 // RC oscillator configuration
#define CCxxx0_RCCTRL0 0x28 // RC oscillator configuration
#define CCxxx0_FSTEST 0x29 // Frequency synthesizer calibration control
#define CCxxx0_PTEST 0x2A // Production test
#define CCxxx0_AGCTEST 0x2B // AGC test
#define CCxxx0_TEST2 0x2C // Various test settings
#define CCxxx0_TEST1 0x2D // Various test settings
#define CCxxx0_TEST0 0x2E // Various test settings
// Strobe commands
#define CCxxx0_SRES 0x30 // Reset chip.
#define CCxxx0_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
// If in RX/TX: Go to a wait state where only the synthesizer is
// running (for quick RX / TX turnaround).
#define CCxxx0_SXOFF 0x32 // Turn off crystal oscillator.
#define CCxxx0_SCAL 0x33 // Calibrate frequency synthesizer and turn it off
// (enables quick start).
#define CCxxx0_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and
// MCSM0.FS_AUTOCAL=1.
#define CCxxx0_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if
// MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:
// Only go to TX if channel is clear.
#define CCxxx0_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer and exit
// Wake-On-Radio mode if applicable.
#define CCxxx0_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer
#define CCxxx0_SWOR 0x38 // Start automatic RX polling sequence (Wake-on-Radio)
#define CCxxx0_SPWD 0x39 // Enter power down mode when CSn goes high.
#define CCxxx0_SFRX 0x3A // Flush the RX FIFO buffer.
#define CCxxx0_SFTX 0x3B // Flush the TX FIFO buffer.
#define CCxxx0_SWORRST 0x3C // Reset real time clock.
#define CCxxx0_SNOP 0x3D // No operation. May be used to pad strobe commands to two
// INT8Us for simpler software.
#define CCxxx0_PARTNUM 0x30
#define CCxxx0_VERSION 0x31
#define CCxxx0_FREQEST 0x32
#define CCxxx0_LQI 0x33
#define CCxxx0_RSSI 0x34
#define CCxxx0_MARCSTATE 0x35
#define CCxxx0_WORTIME1 0x36
#define CCxxx0_WORTIME0 0x37
#define CCxxx0_PKTSTATUS 0x38
#define CCxxx0_VCO_VC_DAC 0x39
#define CCxxx0_TXBYTES 0x3A
#define CCxxx0_RXBYTES 0x3B
#define CCxxx0_PATABLE 0x3E
#define CCxxx0_TXFIFO 0x3F
#define CCxxx0_RXFIFO 0x3F
// RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers
typedef struct S_RF_SETTINGS
{
INT8U FSCTRL2; //自已加的
INT8U FSCTRL1; // Frequency synthesizer control.
INT8U FSCTRL0; // Frequency synthesizer control.
INT8U FREQ2; // Frequency control word, high INT8U.
INT8U FREQ1; // Frequency control word, middle INT8U.
INT8U FREQ0; // Frequency control word, low INT8U.
INT8U MDMCFG4; // Modem configuration.
INT8U MDMCFG3; // Modem configuration.
INT8U MDMCFG2; // Modem configuration.
INT8U MDMCFG1; // Modem configuration.
INT8U MDMCFG0; // Modem configuration.
INT8U CHANNR; // Channel number.
INT8U DEVIATN; // Modem deviation setting (when FSK modulation is enabled).
INT8U FREND1; // Front end RX configuration.
INT8U FREND0; // Front end RX configuration.
INT8U MCSM0; // Main Radio Control State Machine configuration.
INT8U FOCCFG; // Frequency Offset Compensation Configuration.
INT8U BSCFG; // Bit synchronization Configuration.
INT8U AGCCTRL2; // AGC control.
INT8U AGCCTRL1; // AGC control.
INT8U AGCCTRL0; // AGC control.
INT8U FSCAL3; // Frequency synthesizer calibration.
INT8U FSCAL2; // Frequency synthesizer calibration.
INT8U FSCAL1; // Frequency synthesizer calibration.
INT8U FSCAL0; // Frequency synthesizer calibration.
INT8U FSTEST; // Frequency synthesizer calibration control
INT8U TEST2; // Various test settings.
INT8U TEST1; // Various test settings.
INT8U TEST0; // Various test settings.
INT8U IOCFG2; // GDO2 output pin configuration
INT8U IOCFG0; // GDO0 output pin configuration
INT8U PKTCTRL1; // Packet automation control.
INT8U PKTCTRL0; // Packet automation control.
INT8U ADDR; // Device address.
INT8U PKTLEN; // Packet length.
} RF_SETTINGS;
/////////////////////////////////////////////////////////////////
const RF_SETTINGS rfSettings =
{
0x00,
0x08, // FSCTRL1 Frequency synthesizer control.
0x00, // FSCTRL0 Frequency synthesizer control.
0x10, // FREQ2 Frequency control word, high byte.
0xA7, // FREQ1 Frequency control word, middle byte.
0x62, // FREQ0 Frequency control word, low byte.
0x5B, // MDMCFG4 Modem configuration.
//0xf6, // MDMCFG4 chang by allen
0xF8, // MDMCFG3 Modem configuration.
//0x83, // MDMCFG3 chang by allen data rate = 2.398K
0x03, // MDMCFG2 Modem configuration.
0x22, // MDMCFG1 Modem configuration.
0xF8, // MDMCFG0 Modem configuration.
0x00, // CHANNR Channel number.
0x47, // DEVIATN Modem deviation setting (when FSK modulation is enabled).
0xB6, // FREND1 Front end RX configuration.
0x10, // FREND0 Front end RX configuration.
0x18, // MCSM0 Main Radio Control State Machine configuration.
0x1D, // FOCCFG Frequency Offset Compensation Configuration.
0x1C, // BSCFG Bit synchronization Configuration.
0xC7, // AGCCTRL2 AGC control.
0x00, // AGCCTRL1 AGC control.
0xB2, // AGCCTRL0 AGC control.
0xEA, // FSCAL3 Frequency synthesizer calibration.
0x2A, // FSCAL2 Frequency synthesizer calibration.
0x00, // FSCAL1 Frequency synthesizer calibration.
0x11, // FSCAL0 Frequency synthesizer calibration.
0x59, // FSTEST Frequency synthesizer calibration.
0x81, // TEST2 Various test settings.
0x35, // TEST1 Various test settings.
0x09, // TEST0 Various test settings.
0x0B, // IOCFG2 GDO2 output pin configuration.
0x06, // IOCFG0D GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.
0x04, // PKTCTRL1 Packet automation control.
//0x05, // PKTCTRL0 Packet automation control.
0x01, //PKTCTRL0 crc disable chang by allen at 09.12.24
0x00, // ADDR Device address.
0x0c // PKTLEN Packet length.
};
//*****************************************************************************************
//函數名:delay(unsigned int s)
//輸入:時間
//輸出:無
//功能描述:普通廷時,內部用
//*****************************************************************************************
static void delay(unsigned int s)
{
unsigned int i;
for(i=0; i<s; i++);
for(i=0; i<s; i++);
}
void halWait(INT16U timeout) {
do {
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
} while (--timeout);
}
void SpiInit(void)
{
CSN=0;
SCK=0;
CSN=1;
}
/*****************************************************************************************
//函數名:CpuInit()
//輸入:無
//輸出:無
//功能描述:SPI初始化程序
/*****************************************************************************************/
void CpuInit(void)
{
SpiInit();
delay(5000);
}
//*****************************************************************************************
//函數名:SpisendByte(INT8U dat)
//輸入:發送的數據
//輸出:無
//功能描述:SPI發送一個字節
//*****************************************************************************************
INT8U SpiTxRxByte(INT8U dat)
{
INT8U i,temp;
temp = 0;
SCK = 0;
for(i=0; i<8; i++)
{
if(dat & 0x80)
{
MOSI = 1;
}
else MOSI = 0;
dat <<= 1;
SCK = 1;
_nop_();
_nop_();
temp <<= 1;
if(MISO)temp++;
SCK = 0;
_nop_();
_nop_();
}
return temp;
}
//*****************************************************************************************
//函數名:void RESET_CC1100(void)
//輸入:無
//輸出:無
//功能描述:復位CC1100
//*****************************************************************************************
void RESET_CC1100(void)
{
CSN = 0;
while (MISO);
SpiTxRxByte(CCxxx0_SRES); //寫入復位命令
while (MISO);
CSN = 1;
}
//*****************************************************************************************
//函數名:void POWER_UP_RESET_CC1100(void)
//輸入:無
//輸出:無
//功能描述:上電復位CC1100
//*****************************************************************************************
void POWER_UP_RESET_CC1100(void)
{
CSN = 1;
halWait(1);
CSN = 0;
halWait(1);
CSN = 1;
halWait(41);
RESET_CC1100(); //復位CC1100
}
//*****************************************************************************************
//函數名:void halSpiWriteReg(INT8U addr, INT8U value)
//輸入:地址和配置字
//輸出:無
//功能描述:SPI寫寄存器
//*****************************************************************************************
void halSpiWriteReg(INT8U addr, INT8U value)
{
CSN = 0;
while (MISO);
SpiTxRxByte(addr); //寫地址
SpiTxRxByte(value); //寫入配置
CSN = 1;
}
//*****************************************************************************************
//函數名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//輸入:地址,寫入緩沖區,寫入個數
//輸出:無
//功能描述:SPI連續寫配置寄存器
//*****************************************************************************************
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i, temp;
temp = addr | WRITE_BURST;
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
SpiTxRxByte(buffer[i]);
}
CSN = 1;
}
//*****************************************************************************************
//函數名:void halSpiStrobe(INT8U strobe)
//輸入:命令
//輸出:無
//功能描述:SPI寫命令
//*****************************************************************************************
void halSpiStrobe(INT8U strobe)
{
CSN = 0;
while (MISO);
SpiTxRxByte(strobe); //寫入命令
CSN = 1;
}
//*****************************************************************************************
//函數名:INT8U halSpiReadReg(INT8U addr)
//輸入:地址
//輸出:該寄存器的配置字
//功能描述:SPI讀寄存器
//*****************************************************************************************
INT8U halSpiReadReg(INT8U addr)
{
INT8U temp, value;
temp = addr|READ_SINGLE;//讀寄存器命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CSN = 1;
return value;
}
//*****************************************************************************************
//函數名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//輸入:地址,讀出數據后暫存的緩沖區,讀出配置個數
//輸出:無
//功能描述:SPI連續寫配置寄存器
//*****************************************************************************************
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i,temp;
temp = addr | READ_BURST; //寫入要讀的配置寄存器地址和讀命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
buffer[i] = SpiTxRxByte(0);
}
CSN = 1;
}
//*****************************************************************************************
//函數名:INT8U halSpiReadReg(INT8U addr)
//輸入:地址
//輸出:該狀態寄存器當前值
//功能描述:SPI讀狀態寄存器
//*****************************************************************************************
INT8U halSpiReadStatus(INT8U addr)
{
INT8U value,temp;
temp = addr | READ_BURST; //寫入要讀的狀態寄存器的地址同時寫入讀命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CSN = 1;
return value;
}
//*****************************************************************************************
//函數名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)
//輸入:無
//輸出:無
//功能描述:配置CC1100的寄存器
//*****************************************************************************************
void halRfWriteRfSettings(void)
{
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL2);//自已加的
// Write register settings
halSpiWriteReg(CCxxx0_FSCTRL1, rfSettings.FSCTRL1);
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL0);
halSpiWriteReg(CCxxx0_FREQ2, rfSettings.FREQ2);
halSpiWriteReg(CCxxx0_FREQ1, rfSettings.FREQ1);
halSpiWriteReg(CCxxx0_FREQ0, rfSettings.FREQ0);
halSpiWriteReg(CCxxx0_MDMCFG4, rfSettings.MDMCFG4);
halSpiWriteReg(CCxxx0_MDMCFG3, rfSettings.MDMCFG3);
halSpiWriteReg(CCxxx0_MDMCFG2, rfSettings.MDMCFG2);
halSpiWriteReg(CCxxx0_MDMCFG1, rfSettings.MDMCFG1);
halSpiWriteReg(CCxxx0_MDMCFG0, rfSettings.MDMCFG0);
halSpiWriteReg(CCxxx0_CHANNR, rfSettings.CHANNR);
halSpiWriteReg(CCxxx0_DEVIATN, rfSettings.DEVIATN);
halSpiWriteReg(CCxxx0_FREND1, rfSettings.FREND1);
halSpiWriteReg(CCxxx0_FREND0, rfSettings.FREND0);
halSpiWriteReg(CCxxx0_MCSM0 , rfSettings.MCSM0 );
halSpiWriteReg(CCxxx0_FOCCFG, rfSettings.FOCCFG);
halSpiWriteReg(CCxxx0_BSCFG, rfSettings.BSCFG);
halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);
halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);
halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);
halSpiWriteReg(CCxxx0_FSCAL3, rfSettings.FSCAL3);
halSpiWriteReg(CCxxx0_FSCAL2, rfSettings.FSCAL2);
halSpiWriteReg(CCxxx0_FSCAL1, rfSettings.FSCAL1);
halSpiWriteReg(CCxxx0_FSCAL0, rfSettings.FSCAL0);
halSpiWriteReg(CCxxx0_FSTEST, rfSettings.FSTEST);
halSpiWriteReg(CCxxx0_TEST2, rfSettings.TEST2);
halSpiWriteReg(CCxxx0_TEST1, rfSettings.TEST1);
halSpiWriteReg(CCxxx0_TEST0, rfSettings.TEST0);
halSpiWriteReg(CCxxx0_IOCFG2, rfSettings.IOCFG2);
halSpiWriteReg(CCxxx0_IOCFG0, rfSettings.IOCFG0);
halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);
halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);
halSpiWriteReg(CCxxx0_ADDR, rfSettings.ADDR);
halSpiWriteReg(CCxxx0_PKTLEN, rfSettings.PKTLEN);
}
//*****************************************************************************************
//函數名:void halRfSendPacket(INT8U *txBuffer, INT8U size)
//輸入:發送的緩沖區,發送數據個數
//輸出:無
//功能描述:CC1100發送一組數據
//*****************************************************************************************
void halRfSendPacket(INT8U *txBuffer, INT8U size)
{
halSpiWriteReg(CCxxx0_TXFIFO, size);
halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size); //寫入要發送的數據
halSpiStrobe(CCxxx0_STX); //進入發送模式發送數據
// Wait for GDO0 to be set -> sync transmitted
while (!GDO0);
// Wait for GDO0 to be cleared -> end of packet
while (GDO0);
halSpiStrobe(CCxxx0_SFTX);
delay(20);
}
void setRxMode(void)
{
halSpiStrobe(CCxxx0_SRX); //進入接收狀態
}
/*
// Bit masks corresponding to STATE[2:0] in the status byte returned on MISO
#define CCxx00_STATE_BM 0x70
#define CCxx00_FIFO_BYTES_AVAILABLE_BM 0x0F
#define CCxx00_STATE_TX_BM 0x20
#define CCxx00_STATE_TX_UNDERFLOW_BM 0x70
#define CCxx00_STATE_RX_BM 0x10
#define CCxx00_STATE_RX_OVERFLOW_BM 0x60
#define CCxx00_STATE_IDLE_BM 0x00
static INT8U RfGetRxStatus(void)
{
INT8U temp, spiRxStatus1,spiRxStatus2;
INT8U i=4;// 循環測試次數
temp = CCxxx0_SNOP|READ_SINGLE;//讀寄存器命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
spiRxStatus1 = SpiTxRxByte(0);
do
{
SpiTxRxByte(temp);
spiRxStatus2 = SpiTxRxByte(0);
if(spiRxStatus1 == spiRxStatus2)
{
if( (spiRxStatus1 & CCxx00_STATE_BM) == CCxx00_STATE_RX_OVERFLOW_BM)
{
halSpiStrobe(CCxxx0_SFRX);
return 0;
}
return 1;
}
spiRxStatus1=spiRxStatus2;
}
while(i--);
CSN = 1;
return 0;
}
*/
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)
{
INT8U status[2];
INT8U packetLength;
INT8U i=(*length)*4; // 具體多少要根據datarate和length來決定
halSpiStrobe(CCxxx0_SRX); //進入接收狀態
//delay(5);
//while (!GDO1);
//while (GDO1);
delay(2);
while (GDO0)
{
delay(2);
--i;
if(i<1)
return 0;
}
if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字節數不為0
{
//LED2 = 0;
packetLength = halSpiReadReg(CCxxx0_RXFIFO);//讀出第一個字節,此字節為該幀數據長度
//if (packetLength <= *length) //如果所要的有效數據長度小于等于接收到的數據包的長度
if(packetLength == 0x08)
{
//halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //讀出所有接收到的數據
halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, 8); //讀出所有接收到的數據
*length = packetLength; //把接收數據長度的修改為當前數據的長度
// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
//halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //讀出CRC校驗位
halSpiStrobe(CCxxx0_SFRX); //清洗接收緩沖區
// delay(2);
// halSpiStrobe(CCxxx0_SRX); //進入接收狀態
// delay(20);
//delay(200);
return 1;
//return (status[1] & CRC_OK); //如果校驗成功返回接收成功
}
else
{
*length = packetLength;
halSpiStrobe(CCxxx0_SFRX); //清洗接收緩沖區
// delay(2);
// halSpiStrobe(CCxxx0_SRX); //進入接收狀態
// delay(20);
// LED2 = 1;
return 0;
}
}
return 0;
}
void main(void)
{
unsigned char key1_flag = 0;
bit key2_flag = 0;
unsigned int key1_scan_cnt = 400;
unsigned int key2_scan_cnt = 300;
INT8U i = 0;
INT8U leng =0;
INT8U tf =0;
INT8U TxBuf[8]={1,2,3,4,5,6,7,8}; // 8字節, 如果需要更長的數據包,請正確設置
INT8U RxBuf[8]={0};
CpuInit();
POWER_UP_RESET_CC1100();
halRfWriteRfSettings();
halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);
//halSpiStrobe(CCxxx0_SRX); //進入接收狀態
//setRxMode();
while(1)
{
//setRxMode();
delay(10);
if(KEY1 == 0)
{
key1_scan_cnt--;
if(!key1_scan_cnt)
{
key1_scan_cnt = 300;
if(key1_flag == 0)//判斷按鍵是否第1次按下
{
key1_flag = 1;//按鍵第1次按下標志位
}
}
}
else
{
key1_scan_cnt = 300;
if(key1_flag == 1)//判斷是否第一次按鍵動作松開
{
led1 = 0;
led0 = 0;
key1_flag = 2;
key1_scan_cnt = 3;
TxBuf[0] = 0x77;//第1個字節為0x77的數據幀,接收方收到后不需要返回應答
while(1)
{
halRfSendPacket(TxBuf,8); // Transmit Tx buffer data
delay(100);
if(KEY1 == 0)//檢測按鍵是否第2次按下
{
key1_scan_cnt--;
if(!key1_scan_cnt)
{
key1_flag = 3;//按鍵第2次按下
key1_scan_cnt = 300;
led1 = 1;
led0 = 1;
break;//當按鍵再次按下時退出長發狀態
}
}
else//沒有第2次的按鍵動作
{
key1_scan_cnt = 3;
}
}
}
else if(key1_flag == 3)//是否為第2次的按鍵動作松開
{
key1_flag = 0;
}
}
if(KEY2 == 0)
{
key2_scan_cnt--;
if(!key2_scan_cnt)//確認按鍵正常按下
{
key2_scan_cnt = 300;
key2_flag = 1;//按鍵第1次按下標志位
}
}
else
{
key2_scan_cnt = 300;
if(key2_flag)//按鍵彈起
{
LED1 = 0;
key2_flag = 0;
delay(1000);
TxBuf[0] = 0x88;
halRfSendPacket(TxBuf,8);// Transmit Tx buffer data
LED1 = 1;
}
}
leng =8; // 預計接受8 bytes
if(halRfReceivePacket(RxBuf,&leng))
// if(!GDO0)
{
// leng =8; // 預計接受8 bytes
// if(halRfReceivePacket(RxBuf,&leng))
{
if(RxBuf[0] == 0x77)//接收到的數據不需要返回應答
{
LED2 = ~LED2;
}
else if(RxBuf[0] == 0x88)//判斷接收到的數據是否需要返回應答
{
LED2 = 0;//接收數據正確,開接收指示燈
LED1 = 0;//準備發送應答,開發送指示燈
delay(1000);
TxBuf[0] = 0x99;
halRfSendPacket(TxBuf,8); // Transmit Tx buffer data 返回應答
LED2 = 1;
LED1 = 1;
}
else if(RxBuf[0] == 0x99)//應答數據
{
LED2 = 0;
delay(1000);
LED2 = 1;
}
}
}
}
}
